
AVR@VUSec
Erik van der Kouwe & Herbert Bos

June 14th, 2023

VUSec Research Areas

2

What do we do?

•Novel attacks

• Efficient defenses

•Automated vulnerability finding

•Reverse engineering

• Fault tolerance

• Formal verification

3

What do we do?

•Novel attacks

• Efficient defenses

•Automated vulnerability finding

•Reverse engineering

• Fault tolerance

• Formal verification

4

Fuzzing

“Explore code at runtime to find issues”

Early work on directed fuzzing Dowser [USENIX Sec’13]

5

Fuzzing

“Explore code at runtime to find issues”

In hardware Examples

Side channels Absynthe [NDSS’20]

Rowhammer TRRespass [S&P’20]

Speculative Execution Kasper [NDSS’22], BHI [USENIX Sec’22]

Pre-silicon BugsBunny [SILM’22] + ongoing

6

Fuzzing

“Explore code at runtime to find issues”

In firmware Examples

Rehosting FirmWire [NDSS’22],
FuzzWare [USENIX Sec’22]

→ Less active in this area these days

7

Fuzzing

“Explore code at runtime to find issues”

In OS kernels Examples

Linux Type Confusion Uncontained [USENIX Sec’23]

Speculative execution Kasper [NDSS’22]

8

Fuzzing

“Explore code at runtime to find issues”

In applications Examples

Grammar-based IFuzzer [ESORICS’16]

Smarter inputs VUzzer [NDSS’17]

Directed fuzzing Parmesan [USENIX Sec’20]

Performance / snapshots SNAPPY [ACSAC’22]

Performance / sanitizers FloatZone [USENIX Sec’23]

Performance / problems Don't Look UB [PLDI’23]

Performance / collab Cupid [ACSAC’20]
9

Beyond Fuzzing

Ongoing work on other AVR topics

• Vulnerability analysis

• Automated patching

10

In this presentation…

I will focus on fuzzing applications for crashes.

11

Fuzzing

• Fuzzing is at the heart of AVR

• Surprisingly effective: finds more bugs than we can fix

12

code binary feedback

seeds

input

inputs

sanitize execute

mutate

select

Fuzzing

13

No! You waste
energy and time!

Speeding Up Fuzzing

• Sanitization detects memory errors early,
but greatly slows down execution

• FloatZone: repurpose COTS hardware to make this efficient

14

code binary feedback

seeds

input

inputs

sanitize execute

mutate

select

Speeding Up Fuzzing

• We execute the same code over and over again,
even before we process changes in input

• Snappy: take snapshots to reduce redundant execution

15

code binary feedback

seeds

input

inputs

sanitize execute

mutate

select

FloatZone: Accelerating Memory Error
Detection using the Floating Point Unit
Enrico Barberis, Raphael Isemann, Erik van der Kouwe, Cristiano Giuffrida, and
Herbert Bos. USENIX Security 2023.

16

FloatZone in a Nutshell

17

Why FloatZone?

• Detects spatial and temporal memory errors

• Just 37% runtime overhead on SPEC CPU2006 and CPU2017

• 2.88x increase in fuzzing throughput compared to
state of the art

18

Key Insight

• Memory Sanitizers heavily rely on expensive compare and branch
instructions to check the validity of memory accesses

• The checks result in high overhead: ASan ~2x slowdown
• e.g., due to polluting the Branch Predictor and frequent Cache misses

• Checks "always" fine!

• What if we perform sanitizer checks using floating point additions?

• And show you that these branchless checks are twice as fast

19

Solution: Exception-Based Checks

Express comparisons using floating point underflow exceptions!

… but when do they happen?

20

1.5 ∙ 2−126 − 1.0 ∙ 2−126 =

0.5 ∙ 2−126

1.0 ∙ 2−127

Underflow
SIGFPE

Not in normal form !

Min exponent is -126 !

Approach

• Find magic numbers
• 0x0b8b8b8a (cast to float) causes underflow

only when added to 0x8b8b8b8b or 0x8b8b8b89

• Maintain redzones in memory
• In inaccessible regions, write 0x89 byte followed by

repeating 0x8b bytes

• Add check before memory access
• Add 0x0b8b8b8a to value stored in memory

• Faults in redzone

21

89 8b 8b 8b
8b 8b 8b 8b

(data)
(data)
(data)
(data)

89 8b 8b 8b
8b 8b 8b 8b

(data)
(data)

89 8b 8b 8b
8b 8b 8b 8b
8b 8b 8b 8b

Fuzzing Evaluation

• Fuzzing using AFL++ and FloatZone as sanitizer,
compared to state of the art

• Geomean increase in total executions across 7 binaries (24h):

22

Sanitizer Throughput increase

ASan-- 188%

ReZZan 71.4%

Snappy: Efficient Fuzzing with
Adaptive and Mutable Snapshots
Elia Geretto, Cristiano Giuffrida, Herbert Bos, and Erik van der Kouwe. ACSAC 2022

23

Why Snappy?

• Snappy reduces redundant execution to make fuzzers faster

• It achieves:
• up to 1.76× speed increase in FuzzBench,

with no significant regressions

• up to 31% coverage increase after 24 hours
on real-world programs

24

Key Insight

• Fuzzing is trial and error
• More attempts make success (crashes) more likely

• Speed (exec/sec) is extremely important

• Operations that do not depend on
mutated input are redundant
• Skip part of program execution that is always the same

25

Optimization Opportunities

• Program initialization is
redundant

26

snapshot

initialize

read input

use input

restore

Optimization Opportunities

• Program initialization is
redundant

• Input data is copied before use,
but does not influence the
execution

• Several mutation operators leave
most of the input unchanged

27

snapshot

initialize

read input

use input

restore

Optimization Opportunities

• Program initialization is
redundant

• Input data is copied before use,
but does not influence the
execution

• Several mutation operators leave
most of the input unchanged

• Pushing the snapshot into the
execution will remove redundant
operations

28

snapshot

initialize

read input

use input

restore

Applying Mutations to Snapshots

• Snapshot creation
• Dynamic taint analysis to track which input bytes modify

which memory bytes

• Create snapshot when tainted byte controls branch

• Snapshot restore
• Use taint to update modified input bytes in memory

• Taint tracking is expensive
• Decide dynamically whether it is worth it,

depending on extent of snapshot reuse

29

Evaluation

30

Conclusions

31

Conclusions

• Still plenty of opportunity to improve fuzzing

• Eliminating duplicate work is effective
• General principle: cache and reuse partial results (memoization)

• Hardware can sometimes do cool tricks we never thought of
• Any other ideas how to use a primitive that can very quickly compare two 4-

byte values for equality where inequality is the common case?

32

33

	Slide 1: AVR@VUSec
	Slide 2: VUSec Research Areas
	Slide 3: What do we do?
	Slide 4: What do we do?
	Slide 5: Fuzzing
	Slide 6: Fuzzing
	Slide 7: Fuzzing
	Slide 8: Fuzzing
	Slide 9: Fuzzing
	Slide 10: Beyond Fuzzing
	Slide 11: In this presentation…
	Slide 12: Fuzzing
	Slide 13: Fuzzing
	Slide 14: Speeding Up Fuzzing
	Slide 15: Speeding Up Fuzzing
	Slide 16: FloatZone: Accelerating Memory Error Detection using the Floating Point Unit
	Slide 17: FloatZone in a Nutshell
	Slide 18: Why FloatZone?
	Slide 19: Key Insight
	Slide 20: Solution: Exception-Based Checks
	Slide 21: Approach
	Slide 22: Fuzzing Evaluation
	Slide 23: Snappy: Efficient Fuzzing with Adaptive and Mutable Snapshots
	Slide 24: Why Snappy?
	Slide 25: Key Insight
	Slide 26: Optimization Opportunities
	Slide 27: Optimization Opportunities
	Slide 28: Optimization Opportunities
	Slide 29: Applying Mutations to Snapshots
	Slide 30: Evaluation
	Slide 31: Conclusions
	Slide 32: Conclusions
	Slide 33

