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What do we do?

•Novel attacks

• Efficient defenses

•Automated vulnerability finding

•Reverse engineering

• Fault tolerance

• Formal verification
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Fuzzing

“Explore code at runtime to find issues”

Early work on directed fuzzing Dowser [USENIX Sec’13]
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Fuzzing

“Explore code at runtime to find issues”

In hardware Examples

Side channels Absynthe [NDSS’20]

Rowhammer TRRespass [S&P’20]

Speculative Execution Kasper [NDSS’22], BHI [USENIX Sec’22]

Pre-silicon BugsBunny [SILM’22] + ongoing

6



Fuzzing

“Explore code at runtime to find issues”

In firmware Examples

Rehosting FirmWire [NDSS’22], 
FuzzWare [USENIX Sec’22]

→ Less active in this area these days
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Fuzzing

“Explore code at runtime to find issues”

In OS kernels Examples

Linux Type Confusion Uncontained [USENIX Sec’23]

Speculative execution Kasper [NDSS’22]
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Fuzzing

“Explore code at runtime to find issues”

In applications Examples

Grammar-based IFuzzer [ESORICS’16]

Smarter inputs VUzzer [NDSS’17]

Directed fuzzing Parmesan [USENIX Sec’20]

Performance / snapshots SNAPPY [ACSAC’22]

Performance / sanitizers FloatZone [USENIX Sec’23]

Performance / problems Don't Look UB [PLDI’23]

Performance / collab Cupid [ACSAC’20]
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Beyond Fuzzing

Ongoing work on other AVR topics

• Vulnerability analysis

• Automated patching
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In this presentation…

I will focus on fuzzing applications for crashes.
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Fuzzing

• Fuzzing is at the heart of AVR

• Surprisingly effective: finds more bugs than we can fix
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Fuzzing
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No! You waste 
energy and time!



Speeding Up Fuzzing

• Sanitization detects memory errors early,
but greatly slows down execution

• FloatZone: repurpose COTS hardware to make this efficient
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Speeding Up Fuzzing

• We execute the same code over and over again,
even before we process changes in input

• Snappy: take snapshots to reduce redundant execution
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FloatZone: Accelerating Memory Error 
Detection using the Floating Point Unit
Enrico Barberis, Raphael Isemann, Erik van der Kouwe, Cristiano Giuffrida, and 
Herbert Bos. USENIX Security 2023.
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FloatZone in a Nutshell
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Why FloatZone?

• Detects spatial and temporal memory errors

• Just 37% runtime overhead on SPEC CPU2006 and CPU2017

• 2.88x increase in fuzzing throughput compared to
state of the art
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Key Insight

• Memory Sanitizers heavily rely on expensive compare and branch 
instructions to check the validity of memory accesses

• The checks result in high overhead: ASan ~2x slowdown
• e.g., due to polluting the Branch Predictor and frequent Cache misses

• Checks "always" fine!

• What if we perform sanitizer checks using floating point additions?

• And show you that these branchless checks are twice as fast
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Solution: Exception-Based Checks

Express comparisons using floating point underflow exceptions!

… but when do they happen?
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1.5 ∙ 2−126 − 1.0 ∙ 2−126 =

0.5 ∙ 2−126

1.0 ∙ 2−127

Underflow
SIGFPE

Not in normal form !

Min exponent is -126 !



Approach

• Find magic numbers
• 0x0b8b8b8a (cast to float) causes underflow

only when added to 0x8b8b8b8b or 0x8b8b8b89

• Maintain redzones in memory
• In inaccessible regions, write 0x89 byte followed by

repeating 0x8b bytes

• Add check before memory access
• Add 0x0b8b8b8a to value stored in memory

• Faults in redzone
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Fuzzing Evaluation

• Fuzzing using AFL++ and FloatZone as sanitizer,
compared to state of the art

• Geomean increase in total executions across 7 binaries (24h):
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Sanitizer Throughput increase

ASan-- 188%

ReZZan 71.4%



Snappy: Efficient Fuzzing with 
Adaptive and Mutable Snapshots
Elia Geretto, Cristiano Giuffrida, Herbert Bos, and Erik van der Kouwe. ACSAC 2022
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Why Snappy?

• Snappy reduces redundant execution to make fuzzers faster

• It achieves:
• up to 1.76× speed increase in FuzzBench,

with no significant regressions

• up to 31% coverage increase after 24 hours
on real-world programs
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Key Insight

• Fuzzing is trial and error
• More attempts make success (crashes) more likely

• Speed (exec/sec) is extremely important

• Operations that do not depend on
mutated input are redundant
• Skip part of program execution that is always the same
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Optimization Opportunities

• Program initialization is 
redundant
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Optimization Opportunities

• Program initialization is 
redundant

• Input data is copied before use, 
but does not influence the 
execution

• Several mutation operators leave 
most of the input unchanged
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Optimization Opportunities

• Program initialization is 
redundant

• Input data is copied before use, 
but does not influence the 
execution

• Several mutation operators leave 
most of the input unchanged

• Pushing the snapshot into the 
execution will remove redundant 
operations
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Applying Mutations to Snapshots

• Snapshot creation
• Dynamic taint analysis to track which input bytes modify

which memory bytes

• Create snapshot when tainted byte controls branch

• Snapshot restore
• Use taint to update modified input bytes in memory

• Taint tracking is expensive
• Decide dynamically whether it is worth it,

depending on extent of snapshot reuse
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Evaluation
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Conclusions
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Conclusions

• Still plenty of opportunity to improve fuzzing

• Eliminating duplicate work is effective
• General principle: cache and reuse partial results (memoization)

• Hardware can sometimes do cool tricks we never thought of
• Any other ideas how to use a primitive that can very quickly compare two 4-

byte values for equality where inequality is the common case?
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